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a b s t r a c t 

Background and Objective: Automated R-wave detection plays a vital role in electrocardiography (ECG) 

and ECG-based computer-aided diagnosis. Recently, a multi-level one-dimensional (1D) deep learning ap- 

proach was presented that shows good performance as compared to traditional methods. 

Methods: In this paper, we present several improvements of the multi-level 1D convolutional neural net- 

work (CNN)-based deep learning approach using: (i) adaptive deep learning, (ii) cross-database training, 

and (iii) cross-lead training. For this, we consider ECG signals from four publicly available databases: 

MIT-BIH, INCART, TELE, and SDDB, having 109,404, 175,660, 6,708, and 1,684,447 annotated beats, respec- 

tively. Except for TELE, all databases provide at least two-lead recordings. To evaluate the improvements, 

experiments are performed with adaptive k-times cross-trained databases validation scheme (k = 5). The 

hypothesis tested are: (i) the improvements outperform the state-of-the-art, (ii) cross-database training 

and adaptive deep learning contribute, and (iii) additional databases or cross-lead training further im- 

proves the results. 

Results: Our proposed approach outperforms the state-of-the-art. In terms of F-measure, F = 99.75% 

and F = 95.25% is obtained for the MIT-BIH and TELE databases, respectively. Further, cross-database 

training (F = 98.02%) is found to be more effective than training on individual databases (F = 97.33%). 

The performance of our approach further improves when additional databases and different leads are 

used for training. 

Conclusion: Existing state-of-the-art methods perform low on noisy and pathological signals. Adaptive 

cross-data training identifies the optimal model. Using multiple datasets and leads allows analyzing noisy, 

pathological and mobile-recorded long-term ECG signals without ground truths. These conclusions are 

based on the comprehensive evaluation of four different databases, and in total, about 4.5 million anno- 

tated beats. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Cardiovascular diseases (CVDs) are considered as the leading 

ause of death. According to the World Health Organization, 17.7 

illion people died from CVDs in 2015, and 37% were premature 

eaths. It is further expected that CVDs will remain in the first 

lace up to 2035 [ 1 , 2 ]. 

Electrocardiography (ECG) represents the bioelectrical activity 

f the heart or cardiac muscle in an individual heartbeat. An ECG 

s the basis of a simple, noninvasive, and well-established CVD 
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iagnosis [3] . Anomalies in morphological patterns of the ECG 

aveform indicate heart diseases. However, the characteristics and 

ime-varying dynamics of ECG patterns are highly complex and 

ignificantly different, even for a normal subject. The morpho- 

ogical characteristics also vary under different physiological and 

athological conditions. Furthermore, artifacts, noise, dropouts, and 

lass imbalances increase the complexity of ECG analysis [4] . 

Manual analyses use a plot of just a few successive cardiac cy- 

les. Clinically, the ECG is analyzed over a short period using R- 

ave detection and beat decomposition methods. For long-term 

CG, Holter monitoring is performed with multiple leads over 12 

o 24 hours. With the advancement of wearable sensors, ECG sig- 

als are nowadays recorded for more than 24 hours [5] , and man- 

al examination is tedious and time-consuming. 
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Therefore, automated and robust R-wave detection is necessary 

nd remains an intense area of research for decades [5] . Further, 

utomated R-wave detection and heartbeat classification is also re- 

uired to classify arrhythmia and heart abnormalities [6] . Various 

ethod including filter banks [7] , derivatives [ 8 , 9 ], transforms [10–

2] , statistical and morphological approaches [ 13 , 14 ], threshold dif- 

erences [ 15 , 16 ], neural network [ 17 , 18 ], and mixture of hybrid ex-

erts [19] have been proposed. Most of the methods were eval- 

ated with a specific database and, thus, have limited generaliz- 

bility. In addition, these methods have a high variation in perfor- 

ance when applied to signals acquired in different conditions, or 

rom multi-morbid patients. In clinical practice, the accuracy re- 

uces further due to inter- and intra-patient variations [ 20 , 21 ]. 

In order to adapt generalizability, Kashif, Jonas and Deserno 

Kashif) have proposed a simultaneous truth and performance level 

stimation (STAPLE) approach to combine nine R-wave detectors 

 2 ]. The STAPLE combined method performs better than the best 

ndividual algorithm. The authors evaluated their approach using 

ublic and private databases [2] . The reported performance was 

 = 99.73% and F = 97.60% for MIT-BIH and TELE databases, re- 

pectively. 

Recently, several deep learning (DL)-based patient-specific ECG 

lassification schemes have been used for heart disease detection 

 22 , 23 ]. For instance, R-wave localization is used for cost-effective 

nd accurate population-specific screenings in real-time scenarios 

24] . DL-based methods automatically learn and extract critical fea- 

ures from the ECG and provide an abstract representation of the 

ignal [25] . In a study, Chandra et al. (Chandra) have used single 

ayer CNN network to detect R-Peak locations [26] . Moreover, The 

L methods have also been used for the classification of patholog- 

cal conditions such as atrial fibrillation, ventricular fibrillation and 

ongestive heart disease [ 22 , 26 ]. However, most DL approaches do 

ot identify the particular waves within the recording. 

In 2018, Xiang, Lin, and Meng (Xiang) proposed a DL-based 

ethod for accurate QRS complex detection [3] . The network con- 

ains a hierarchical parallel two-level one-dimensional (1D) con- 

olutional neural network (CNN), each with varying network pa- 

ameters. In level one, a two-layer 1D-CNN is employed to extract 

obust features from ECG segments, while in the second level, a 

ingle layer 1D-CNN obtains the abstract features. The extracted 

eatures are concatenated and applied to a fully connected layer 

o distinguish QRS and non-QRS segments. For training, a small 

umber of QRS and non-QRS segments are used. The evaluation 

n MIT-BIH [27] and INCART [28] databases, both resampled to 360 

z, yields sensitivity and specificity of 99.77% and 99.86%, respec- 

ively; a slight improvement of the STAPLE approach. However, the 

erformance of an MIT-BIH trained network applied to the INCART 

ata or vice versa is not assessed. This, however, would be a far 

ore realistic scenario, since a trained network is applied to data 

ecorded by different mobile devices. 

To improve the Xiang approach, we propose (i) adaptive DL to 

upport patient-specific models, and (ii) cross-database training as 

ell as (iii) cross-lead training to increase the number and variety 

f signals seen in the learning period. 

. Methods 

In this section, we briefly recapitulate the approach of Xiang 

nd then describe our improvements. 

.1. The approach of Xiang 

Xiang uses a two-level 1D-CNN method. The ECG signals are 

re-processed using difference signals (subtraction between adja- 

ent samples (Diff)) and average difference signals (averaged per 

everal adjacent difference samples (avgDiff)) to characterize the 
2 
igh slope of QRS complexes. The local-level features are obtained 

rom the difference signal to provide more detailed and local- 

zed descriptors for the signals. Accordingly, global features are 

xtracted from an average difference of the input signal ( Fig. 1 ). 

he set of parameters, such as the number of layers, learning 

ate and epochs are considered from the Xiang approach. On the 

ther hand, the network parameters such as kernel size, filters, 

nd momentum are determined to obtain an optimal performance 

ith minimum training error. Using random search technique, the 

NN parameters namely filters is set as 32, 16, kernel is set to 5, 

ropout is set to 0.5, and momentum is initialized as 0.1, respec- 

ively. 

For training, snippets of fixed length representing QRS and non- 

RS segments are taken, based on the annotations of the reference 

atabases [29] . In accordance with the EC57 and ANSI/AAMI EC38 

tandards, each snippet consists of 56 sampling points: 23 points 

efore and 33 points after the R-wave position [30] . To maintain 

niformity across the database, ECG signals are filtered using a 

12-order lowpass finite impulse response filter with a cutoff fre- 

uency of 180 Hz and later down-sampled to 360 Hz ( Fig. 2 ). The

nite impulse response filter with cut-off frequency computed us- 

ng Nyquist theorem is employed to avoid aliasing [ 31 , 32 ]. 

.2. Improved framework 

Our method consists of four major steps: (i) ECG preprocess- 

ng as of Xiang, (ii) cross-data and cross-lead training, (iii) adap- 

ive QRS complex prediction, and (iv) R-wave detection as of Xiang. 

 Fig. 3 ). 

.3. Cross-database training 

The performance of the network depends on the training data 

nd DL approaches require large sets of such data, which further 

ust carefully be separated from the testing data. Furthermore, 

he selection of training data plays a vital role in computer-aided 

iagnosis and decision making [33] . The trained model performs 

ow if the quantity or quality of data in training is inappropriate. 

he performance is also low on data that is not represented dur- 

ng training. We observed that increased variability of input dur- 

ng the learning phase does not necessarily yield a drop-in perfor- 

ance. Instead, combining a variety of training sets from multiple 

atabases improves the generalizability of the model. 

.4. Deep learning based adaptive QRS detection 

Identifying superior features or training sets increases the sen- 

itivity of a computer-aided diagnostic system or vice-versa [ 4 , 34 ]. 

dentification and selection of better training data is a complex 

ask and depends on various factors such as type, size, origin, and 

uality of data. Furthermore, complexity is increased if multivariate 

linical databases are used for analysis. In most of the published 

pproaches, cross-validation techniques such as k-fold and leave- 

ne-out techniques have been used to determine the training data 

 3 , 4 , 35 , 36 ]. However, adaptive training for multivariate clinical data

as not yet been proposed. 

We suggest a STAPLE-based adaptive method to identify the 

ptimal training model automatically from multiple training sets. 

TAPLE is popular in medical image segmentation and already ap- 

lied to reliable R-wave detection [2] . It is a vote based ranking 

ased method which identify the trained model that has better 

erformance for all the validation sets. Kashif have used STAPLE 

o determine R-wave by voting across nine R-wave detection al- 

orithms [2] . Motivated by this approach, in our study, we used 

TAPLE method to determine the robust training model which per- 

orms equally better across all the training sets. This is referring to 
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Fig. 1. Xiang proposed a two-level 1D-CNN model that is composed of two parallel layers, each comprising 32 filters with a kernel size of 5 × 1. 

Fig. 2. The QRS snippets are labeled from the annotated ground truth. 
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s selection of adaptive training models. These identified adaptive 

rained deep learning model is finally employed to robustly locate 

-waves in test sets. These adaptive trained models can be further 

mprovised with cross-data training to include multiple datatypes, 

hannels and quality of the signals. 
3 
Thus, we generate multiple patient-specific training models for 

ndividual databases. Later, the top n best models of individual 

atabases identified using mean validation accuracy are combined 

o generate an effective cross-trained model, without any repeti- 

ion. The combined models then identify the QRS complexes. To 

mprove the reliability and robustness of the Xiang approach, the 

TAPLE algorithm is further used to determine the most common 

RS location from an ensemble of k cross-trained adaptive models. 

or this study, random training samples are obtained from the in- 

ividual dataset using k-fold cross validation; here, k is set to 5 for 

ross data-trained adaptive training model. In this cross-validation 

echnique, the samples are divided into k uniformly random sets, 

he k-1 set is used for training and the remaining set is used as a

esting sample. 

.5. Cross-lead training 

Different ECG datasets can be collected using multiple devices 

ith varying leads and different experimental protocols. These 

echnical variations will add discrepancies to the existing dataset 

cross the subjects. Hence, to reduce inter- and intra-subject vari- 

bility across the database, cross-data training and adaptive model 

election are further enhanced by including cross-lead training 

37] . In this study, multiple ECG leads are considered as the part of 

nput data for training sets only, if such leads exhibit similar mor- 

hological shapes in ECG waveforms, e.g., I, II, V5, V6, AVL. These 

dditional samples are randomly selected to explore the benefits 

f cross-lead variability. 
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Fig. 3. Block diagram of our method. The dotted lines indicate the extensions to the approach of Xiang [ 3 ] . 
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. Evaluation 

As state-of-the-art, we consider the STAPLE-based approach of 

ashif [2] as well as the non-adaptive and single database-trained 

L model of Xiang [3] . The STAPLE method employs nine individ- 

al R-wave detectors namely, Arzeno et al. [8] , Chernenko [38] , 

rteaga-Falconi et al. [9] , Liu et al. [10] , Manikandan et al. [39] ,

an and Tompkins [40] , Khamis et al. [41] , Afonso et al. [7] , and

adeiro et al. [42] . 

.1. Hypothesis 

H1: Our method outperforms state-of-the-art R-wave detection. 

H2: The performance gain is due to both cross-database and 

daptive training. 

H3: Additional training data or cross-lead training or further 

mproves performance. 

.2. Experiments 

In order to prove (or disapprove) the hypothesis, three experi- 

ents are designed and conducted: 

E1: The performance of Kashif, Chandra, Xiang, and our method 

ExtX) are evaluated using manual ground truth. In addition, 

e extend Kashif approach as follows: (i) Kashif + Xiang, (ii) 

ashif + ExtX, and (iii) Kashif + Xiang + ExtX. Hypothesis H1 will 

e accepted if ExtX or Kashif extensions along with ExtX perform 

est. In order to compare with previous papers, we compute the 

esults for all databases individually and consider lead II only. 

E2: We extend Xiang with (i) the adaptive component, (ii) the 

ross-data training, and (iii) both, which equals ExtX. The hypoth- 

sis H2 is accepted if the performance gains for (i) to (iii). 

E3: We extend the data that is used for training by feeding sev- 

ral leads individually. Also, we use additional data annotated with 
Table 1 

Databases in use for the experiments. All data is publicit

R-wave localization, and contains pathological records. 

Database Leads Subject Records Sampling ra

MIT-BIH 2 47 48 360 

INCART 12 32 75 257 

TELE 1 120 250 500 

SDDB 2 20 20 250 

4 
he appropriate ground truth. H3 is accepted if these extensions 

lso yield a performance gain. 

.3. Databases 

Although there are several ECG databases that have been used 

y researchers towards R-wave detection, most use MIT-BIH Ar- 

hythmia [27] and St. Petersburg Institute of Cardiological Tech- 

ics 12-lead Arrhythmia (INCART) [28] . Further, INCART and TELE 

42] contain multi-morbid and remotely monitored signals with 

ost common heart abnormalities. 

Therefore, we have used MIT-BIH, INCART and TELE database to 

est and validate the robustness of our proposed method (experi- 

ent E1). For experiment E2, we merge these databases. To per- 

orm experiment E3, additional data is required. We use the Sud- 

en Cardiac Death Holter Database (SDDB) as it contains multi- 

orbid long-term ECG signals [ 24 , 43 ]. To compare the results, 

DDB is used only for additional adaptive training. In SDDB, each 

ecord provides a different set of leads. Three records (out of the 

3 available) do not have any of the useful leads L1 = I, L2 = II, V5,

6, or AVL and hence, they have been excluded. Furthermore, we 

se L1 = I and L2 = II of MIT-BIH as well as L1 = I, L2 = II, V5, V6, AVL

f INCART. 

Altogether, the total number of annotated beats sums up to 

pproximately 2 million ( Table 1 ). In the experiment E3, the to- 

al number of beats is 4.5 million. Extended training was done 

n three parts: Multiple lead training was applied, SDDB has been 

dded for training with a single lead, and SSDB data was added for 

raining with multiple leads. 

.4. Metrics 

Qualitative and quantitative evaluation is used to analyze the 

erformance of our method. Based on the previous publication, 
y freely available, annotated with ground truth of 

te [Hz] Duration [min] Total length [beats] 

30 ± 0 109,404 

30 ± 0 175,000 

0.48 ± 0.24 6,708 

1115 ± 468 1,684,447 
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5 
easures namely, precision (P), recall (R), F-measure (F), and score 

S) are computed [36] . 

. Results 

E1: The best F-measures of 99.75% and 95.25% for MIT-BIH and 

ELE, respectively, are obtained using the ExtX approach ( Table 2 ). 

or INCART data, the STAPLE method combined with Xiang and 

xtX yields the best performance (F = 99.39%). For TELE data, 

he top three methods: ExtX, Chandra and Xiang obtained the F- 

easures 99.25%, 94.91% and 94.64%, respectively. The ExtX ap- 

roach yields the highest recall of 99.88% for MIT-BIH. Therefore, 

ypothesis H1 is confirmed. 

E2: In all experiments, the adaptive training outperforms the 

on-adaptive one ( Table 3 ). The best performance is obtained for 

he combined database. Here, the average F-measures of adaptive 

nd non-adaptive training yields 98.02% and 97.33%, respectively. 

he adaptive training method achieves the highest recall of 98.16% 

or TELE. Except, MIT-BIH, the precision of the adaptive approach 

s higher than 95.00%. This confirms our hypothesis H2. 

E3: Multiple lead training improves single lead training with or 

ithout additional databases and adding annotated ground truth 

ata in training increases performance for a single as well as multi- 

le lead training ( Table 4 ). The performance of the extended train- 

ng is F-measure: 99.08% for multiple lead training and additional 

atabases. The recall rate of the our method with multiple leads 

s found to be high (99.49% and 99.43%) than single lead for com- 

ined databases. This confirms our hypothesis H3. 

Except for TELE, the training accuracy per epochs is above 90% 

or both individual and cross-database (see Fig. 4 a). Similarly, the 

raining loss is observed to be less than 20% for early epochs and 

educes with increased epochs (see Fig. 4 b). The training loss of 

ombined database is low at early epochs and remains constant. 

. Discussion 

For decades, automated R-wave detection is an important topic 

f research. Although several algorithms have been proposed and 

uthors have claimed accuracies of more than 99%, novel ap- 

roaches are being developed to address the issues associated 

ith computational electrocardiography [ 5 , 6 ]. Specifically, general- 

zability and robustness of existing approaches with several ECG 

atabases, mobile data recording, and low-quality signals from in- 

xpensive wellness devices are not tested comprehensively, yet [5] . 

In recent years, several machine learning approaches have been 

roposed to diagnose heart diseases; however machine learning is 

ot extensively used for R-wave detection [24] . The reported per- 

ormances of these methods depend on the selection of samples 

sed for training and validation. Similarly, the coarse-fine grained 

eatures from ECG signals can be obtained from the sub-bands us- 

ng wavelet transform. However, there are reports that describe the 

election of mother wavelet in wavelet transform plays a vital role 

or better features. Also, the analysis of signals using wavelet trans- 

orm is computationally expensive [12] . In addition, advancements 

n wearable sensor technology may provide lifetime ECG monitor- 

ng, but requires a robust and patient-specific approach to handle 

ynamic characteristics of long-term ECG data [ 2–4 , 36 ]. 

In this paper, a versatile cross-data trained adaptive DL ap- 

roach for robust R-wave detection is presented, which is suitable 

or multiple databases and multi-parametric ECG signals. To the 

est of our knowledge, the idea of cross-data training and adaptive 

odel selection for DL is first of its kind. The experimental evalu- 

tions show that our methods can be a reliable means for robust 

-wave detection. With the support of adaptive training, our meth- 

ds can be trained for an individual patient, resulting the R-wave 

etection to be more patient-specific. 
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Table 3 

Average performance metrics [%] (mean and standard deviation) of non-adaptive and adaptive training. 

Non-adaptive Adaptive 

Database 

Precision Recall F-Measure Precision Recall F-Measure 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

MIT-BIH 90.96 22.68 70.15 33.45 74.80 30.60 91.34 13.86 88.05 16.64 87.68 15.53 

INCART 92.71 14.23 90.17 20.42 90.35 17.96 96.07 8.84 91.43 12.91 92.15 10.97 

TELE 96.84 8.08 94.39 13.84 94.96 10.90 97.20 6.32 98.16 5.65 97.30 6.09 

MIT-BIH + INCART + TELE 97.96 4.61 97.27 6.13 97.33 5.11 98.77 3.98 97.73 5.79 98.02 4.74 

Table 4 

Average performance metrics [%] of our method using combined databases. 

Learning 

set 

Number of leads 

Single Multiple 

Precision Recall F-Measure Precision Recall F-Measure 

MIT-BIH + INCART + TELE 98.77 97.73 98.02 98.53 99.49 99.01 

MIT-BIH + INCART + TELE + SDDB 97.96 99.35 98.65 98.73 99.43 99.08 

Fig. 4. Mean (a) training accuracy per epochs, and (b) training loss per epochs for MIT-BIH, INCART, TELE database and its cross-datasets. 
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Table 5 

Overall score [%] of R-wave detection methods on multiple 

databases. ExtX uses all data and leads for training, while 

Kashif and Xiang are trained only with data of the same 

database as used in the validation. 

Database MIT-BIH INCART TELE 

Kashif 99.51 99.01 87.51 

Xiang 99.65 98.59 94.62 

ExtX 99.72 98.96 95.31 

Kashif + Xiang 99.66 99.26 89.73 

Kashif + ExtX 99.67 99.29 89.82 

Kashif + Xiang + ExtX 99.71 99.40 91.50 

p

w

i

t

i

i  

t

p

w

n

i

Therefore, with our extensions, the R-wave detection becomes 

atient-specific and performs well on multi-variable QRS ampli- 

udes, small QRS complexes, and noisy pathological signals ( Fig. 5 ). 

urthermore, it is robust to various pathological signal ( Fig. 5 a-e). 

he figure illustrates the similarity of computed R-wave position 

nd manual ground truth. It is seen that in record 210 of MIT-BIH 

nd I65 of INCART, our method detects abnormal R-wave, which is 

ompletely missed by other R-wave detectors ( Fig. 5 a and 5 b). Sim-

larly, in record 203 of MIT-BIH, the extended STAPLE approach and 

ur method determines the abnormal R-wave, which is missed by 

onventional R-wave method ( Fig. 5 d). It may be attributed to the 

obustness of the adaptive DL approach to differentiate normal and 

bnormal beats. Also, cross-database training improves the models 

or being more robust to noisy dataset. Based on Fig. 5 , it can be

bserved that our method has consistently given the best perfor- 

ance for considered all database. It is due to the ability of our 

roposed method along with STAPLE approach to combines the 

trength of multiple algorithms with DL, and thus improves the R- 

ave detection ability. 

In order to compare the generalizability of our approach with 

revious reports, the overall performance score S is computed for 

ll the databases. ExtX is robust among several databases with the 

est overall score: S = 99.72% and S = 95.31% for the MIT-BIH and

he TELE databases, respectively ( Table 5 ). Since their scores are 

ower than 90%, all non-DL methods are ineffective for the TELE 

atabase. This may result from noisy and complex characteristics 

f the signals in the TELE database. Due to the patient-specific ca- 

w

6 
ability of our approach, its score is best for TELE. In addition, it is 

orth mention that on INCART data, Kashif outperforms Xiang. 

Generally, the performance of the R-wave detection algorithm 

s tuned to the specific database; however, our method is designed 

o be reliable for multiple databases and various recorders. This 

s mainly due to its cross-data training and the adaptive learn- 

ng ability. In line with Zhai and Tin [33] , it also provides an au-

omated method for the selection of training samples for better 

erformance. We observed that the performance of ExtX enhances, 

hen more data is used for training, due to eliminating the weak- 

ess of individual databases. 

Comparing the performance of adaptive and non-adaptive train- 

ng, adaptive training is found to be superior. This is in accordance 

ith the findings of Kiranyaz et al. [4] , who concluded that adap- 
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Fig. 5. Robust R-wave detection using the ExtX approach: (a) MIT-BIH Record 210, (b) INCART Record I65, (c) TELE Record 53, (d) MIT-BIH Record 203, (e) INCART Record 

I67, and (e) TELE Record 160. 
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ive learning is better for continuous monitoring. This again indi- 

ates that with the proposed extensions, 1D-CNN is suitable for 

egular monitoring, wearable systems and long-term ECG record- 

ngs. As the original approach of Xiang is based on a parallel CNN, 

e assume further that Xiang et al. as well as our method out- 

erform approaches based on a single layer CNN only, such as the 

ork of Chandra et al. [26] . Also, in comparison to single- and 

arallel-layer CNN, our method is robust across multiple database. 

urthermore, our approach can be used for multiple leads. 

Our method is found to perform best on MIT-BIH and TELE 

atabases. The work of Xiang has established a milestone in the 

etection of R-waves in ECG recordings. Extending Xiang’s method 

y (i) cross-database training, (ii) cross-lead training, and (iii) 

daptive deep learning, performance increases by 0.08%, 0.4% and 

.7% points for MIT-BIH, INCART, and TELE databases, respectively. 

urther, the performance of Xiang extended CNN is F = 98.02% 

nd 98.29% for combined database and multiple lead datasets. By 

ounting the number of beats that are used in the different ex- 

eriments (E2 and E3), it is observed that the massive increase in 

ata contributes only little improvement. Our method overcomes 

he challenge of training for existing algorithms which identify the 

est training sets by trial and error. This is why the performance 

f non-DL methods are found to be highly variable. Indeed, ran- 

om training samples comprising noisy and multi-morbid patient 

CG signals clearly show high variability in performance. 

. Conclusions 

In this paper, we extended the Xiang approach using a robust 

ross-data trained adaptive deep learning approach for R-wave de- 

ection that systematically exploits the temporal dependencies and 

ynamic characteristics of ECG signals. We use a two-level 1D-CNN 

or adaptive and patient-specific feature generation. In order to 
7 
aintain robustness across several databases, cross-data and adap- 

ive training are proposed. Our approach yields best F-measure of 

9.75%, 95.25% for MIT-BIH and TELE database, respectively. Es- 

ecially, the best overall score of 99.72% is obtained by MIT-BIH 

or multiple database training. Cross-data and adaptive training ap- 

roaches improve performance as compared to conventional meth- 

ds. In the future, we will face the embedding to real-time moni- 

oring systems and verify the performance in real-world scenarios. 
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